Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 103: 105129, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640836

RESUMEN

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS: A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS: In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION: Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING: Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).

2.
Proc Natl Acad Sci U S A ; 121(8): e2314128121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359291

RESUMEN

Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Biosíntesis de Proteínas , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Catálisis , Microambiente Tumoral , Histona Acetiltransferasas
3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834477

RESUMEN

ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.


Asunto(s)
Neoplasias , Poli(ADP-Ribosa) Polimerasas , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , ADP-Ribosilación , Reparación del ADN , Procesamiento Proteico-Postraduccional , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas/metabolismo
4.
J Mater Chem B ; 11(3): 631-639, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36537727

RESUMEN

Interferon-γ (IFN-γ) is one of the crucial inflammatory cytokines as an early indicator of multiple diseases. A fast, simple, sensitive and reliable IFN-γ detection method is valuable for early diagnosis and monitoring of treatment. In this work, we creatively developed an electrochemical aptasensor based on the topological material Bi2Se3 for sensitive IFN-γ quantification. The high-quality Bi2Se3 sheet was directly exfoliated from a single crystal, which immobilized the synthesized IFN-γ aptamer. Under optimal conditions, the electrochemical signal revealed a wide linear relation along with the logarithmic concentration of IFN-γ from 1.0 pg mL-1 to 100.0 ng mL-1, with the limit of detection as low as 0.5 pg mL-1. The topological material Bi2Se3 with Dirac surface states improved the electrochemical signal/noise ratio and thus the sensitivity of the sensors. Furthermore, this electrochemical aptasensor exhibited excellent specificity and stability, which could be attributed to the large-scale smooth surface of the Bi2Se3 sheet with few defects decreasing the non-specific absorption. The developed biosensor has the same good performance as the ELISA method for detecting the real serum samples. Our work demonstrates that the developed electrochemical aptasensors based on topological materials have great potential in the field of clinical determination.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Interferón gamma , Bismuto/química , Selenio/química
5.
Cancer Res ; 82(14): 2576-2592, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35648393

RESUMEN

Recent work has made it clear that pericentriolar material (PCM), the matrix of proteins surrounding centrioles, contributes to most functions of centrosomes. Given the occurrence of centrosome amplification in most solid tumors and the unconventional survival of these tumor cells, it is tempting to hypothesize that gel-like mitotic PCM would cluster extra centrosomes to defend against mitotic errors and increase tumor cell survival. However, because PCM lacks an encompassing membrane, is highly dynamic, and is physically connected to centrioles, few methods can decode the components of this microscale matrix. In this study, we took advantage of differential labeling between two sets of APEX2-centrosome reactions to design a strategy for acquiring the PCM proteome in living undisturbed cells without synchronization treatment, which identified 392 PCM proteins. Localization of ubiquitination promotion proteins away from PCM was a predominant mechanism to maintain the large size of PCM for centrosome clustering during mitosis in cancer cells. Depletion of PCM gene kinesin family member 20A (KIF20A) caused centrosome clustering failure and apoptosis in cancer cells in vitro and in vivo. Thus, our study suggests a strategy for targeting a wide range of tumors exhibiting centrosome amplification and provides a proteomic resource for future mining of PCM proteins. SIGNIFICANCE: This study identifies the proteome of pericentriolar material and reveals therapeutic vulnerabilities in tumors bearing centrosome amplification.


Asunto(s)
Proteoma , Proteómica , Centriolos/metabolismo , Centrosoma/metabolismo , Humanos , Mitosis , Proteoma/metabolismo
6.
Bioelectrochemistry ; 146: 108154, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35550252

RESUMEN

Human IgG is one of the most important immunoglobulins in the human body. The present study described the fabrication of four kinds of layer-by-layer structures of copper metal-organic frameworks (Cu-MOFs) on the working electrode by electrodeposition, which were then applied as an electrochemical sensor for the sensitive determination of IgG in serum. First, MOFs synthesized using different deposition potentials are expected to have varied morphology and properties. Herein, four copper MOFs (Cu-MOFs) were electrosynthesized by a simple and direct reduction approach. The as-synthesized Cu-MOFs exhibit varied morphology and electrocatalytic behavior. Then, IgG was employed as a template in the electropolymerization of pyrrole-imprinted films on the surface of glassy carbon electrodes. Finally, the template protein was removed to form a molecularly imprinted film with the capability to qualitatively and quantitatively signaling of IgG. Under optimized conditions, the sensor for IgG exhibits a wide detection range of 0.01-10 ng mL-1 with a limit of detection (LOD) of 3 pg mL-1 (S/N = 3). Besides, other parameters including the selectivity, reproducibility (RSD 3.6%), and recovery rate (95.2-102.0%) are all satisfactory. The practicability of the sensor was verified by detecting IgG in human serum samples, which indicated that the sensor was suitable for potential clinical applications.


Asunto(s)
Estructuras Metalorgánicas , Impresión Molecular , Cobre , Técnicas Electroquímicas , Electrodos , Humanos , Inmunoglobulina G , Límite de Detección , Estructuras Metalorgánicas/química , Reproducibilidad de los Resultados
7.
Front Cell Dev Biol ; 10: 903781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557952

RESUMEN

The repair of DNA damage is a complex process, which helps to maintain genome fidelity, and the ability of cancer cells to repair therapeutically DNA damage induced by clinical treatments will affect the therapeutic efficacy. In the past decade, great success has been achieved by targeting the DNA repair network in tumors. Recent studies suggest that DNA damage impacts cellular innate and adaptive immune responses through nucleic acid-sensing pathways, which play essential roles in the efficacy of DNA repair targeted therapy. In this review, we summarize the current understanding of the molecular mechanism of innate immune response triggered by DNA damage through nucleic acid-sensing pathways, including DNA sensing via the cyclic GMP-AMP synthase (cGAS), Toll-like receptor 9 (TLR9), absent in melanoma 2 (AIM2), DNA-dependent protein kinase (DNA-PK), and Mre11-Rad50-Nbs1 complex (MRN) complex, and RNA sensing via the TLR3/7/8 and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Furthermore, we will focus on the recent developments in the impacts of nucleic acid-sensing pathways on the DNA damage response (DDR). Elucidating the DDR-immune response interplay will be critical to harness immunomodulatory effects to improve the efficacy of antitumor immunity therapeutic strategies and build future therapeutic approaches.

8.
Front Cell Dev Biol ; 10: 889656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517499

RESUMEN

Breast cancer type 1 susceptibility protein (BRCA1) is essential for homologous recombination repair of DNA double-strand breaks. Loss of BRCA1 is lethal to embryos due to extreme genomic instability and the activation of p53-dependent apoptosis. However, the apoptosis is resisted in BRCA1-deficient cancer cells even though their p53 is proficient. In this study, by analysis of transcriptome data of ovarian cancer patients bearing BRCA1 defects in TCGA database, we found that cAMP signaling pathway was significantly activated. Experimentally, we found that BRCA1 deficiency caused an increased expression of ADRB1, a transmembrane receptor that can promote the generation of cAMP. The elevated cAMP not only inhibited DNA damage-induced apoptosis through abrogating p53 accumulation, but also suppressed the proliferation of cytotoxic T lymphocytes by enhancing the expression of immunosuppressive factors DKK1. Inhibition of ADRB1 effectively killed cancer cells by abolishing the apoptotic resistance. These findings uncover a novel mechanism of apoptotic resistance in BRCA1-deficient ovarian cancer cells and point to a potentially new strategy for treating BRCA1-mutated tumors.

9.
Acta Pharmacol Sin ; 42(12): 2144-2154, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34017067

RESUMEN

Mitochondria are essential organelles that provide energy for mammalian cells and participate in multiple functions, such as signal transduction, cellular differentiation, and regulation of apoptosis. Compared with the mitochondria in somatic cells, oocyte mitochondria have an additional level of importance since they are required for germ cell maturation, dysfunction in which can lead to severe inherited disorders. Thus, a systematic proteomic profile of oocyte mitochondria is urgently needed to support the basic and clinical research, but the acquisition of such a profile has been hindered by the rarity of oocyte samples and technical challenges associated with capturing mitochondrial proteins from live oocytes. Here, in this work, using proximity labeling proteomics, we established a mitochondria-specific ascorbate peroxidase (APEX2) reaction in live GV-stage mouse oocytes and identified a total of 158 proteins in oocyte mitochondria. This proteome includes intrinsic mitochondrial structural and functional components involved in processes associated with "cellular respiration", "ATP metabolism", "mitochondrial transport", etc. In addition, mitochondrial proteome capture after oocyte exposure to the antitumor chemotherapeutic cisplatin revealed differential changes in the abundance of several oocyte-specific mitochondrial proteins. Our study provides the first description of a mammalian oocyte mitochondrial proteome of which we are aware, and further illustrates the dynamic shifts in protein abundance associated with chemotherapeutic agents.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Oocitos/efectos de los fármacos , Proteoma/metabolismo , Animales , Ascorbato Peroxidasas/metabolismo , Femenino , Ratones , Ratones Endogámicos ICR , Células 3T3 NIH , Proteómica/métodos
10.
iScience ; 24(3): 102169, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665583

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, characterized by relapsing and remitting colon mucosal inflammation. For patients suffering from UC, a higher risk of colon cancer has been widely recognized. Here, we found that Elf4 -/- mice developed colon tumors with 3 cycles of dextran sulfate sodium salt (DSS) treatment alone. We further showed that ELF4 suppression was prevalent in both patients with UC and DSS-induced mice models, and this suppression was caused by promoter region methylation. ELF4, upon PARylation by PARP1, transcriptionally regulated multiple DNA damage repair machinery components. Consistently, ELF4 deficiency leads to more severe DNA damage both in vitro and in vivo. Oral administration of montmorillonite powder can prevent the reduction of ELF4 in DSS-induced colitis models and lower the risk of colon tumor development during azoxymethane (AOM) and DSS induced colitis-associated cancer (CAC). These data provided additional mechanism of CAC initiation and supported the "epigenetic priming model of tumor initiation".

11.
Reprod Sci ; 28(9): 2540-2549, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33650095

RESUMEN

This study aimed to examine the effects of adding growth hormone (GH) into the in vitro maturation (IVM) culture medium of mouse oocytes on pregnancy outcomes. Cumulus-oocyte complexes (COCs) were cultured in a medium with (GH group, 100 ng/mL) or without (Con group) GH. Thereafter, chromosome morphology, spindle morphology, and mitochondrial function were examined. Embryo development and blastocyst quality after in vitro fertilization were evaluated. After the embryo transfer, the implantation sites and pregnancy outcomes were evaluated. The oocyte maturation rate of the GH group (81.8 ± 9.6%) was compared to that of the Con group (81.3 ± 6.9%, P = 0.928). The proportion of morphologically abnormal spindles in GH-treated oocytes (7.1 ± 0.9%) was significantly lower than control oocytes (13.7 ± 1.3%, P = 0.032), whereas the proportion of morphologically abnormal chromosomes and mitochondrial distribution was similar between the groups. The mitochondrial membrane potential (P < 0.001) and ATP concentration (P < 0.001) in GH-exposed oocytes were higher than those in control oocytes. After fertilization, the blastocyst rate in the GH group (33.8 ± 13.2%) was significantly higher than the Con group (16.2 ± 2.0%, P = 0.003). In addition, inner cell mass (ICM) number (13.91 ± 3.48 vs. 7.00 ± 1.91, P < 0.001), total cell number (47.45 ± 8.39 vs. 37.71 ± 4.15, P = 0.007), and the ratio of ICM/total cell number (29.9 ± 8.2% vs. 18.6 ± 5.0%, P = 0.002) of blastocyst were all higher in GH group. The implantation rate (71.2 ± 1.9% vs. 39.4 ± 16.4%, P < 0.001) and litter size (8.50 ± 3.99 vs. 3.00 ± 1.22, P = 0.018) were significantly higher in the GH group. Although addition of GH into IVM culture medium does not improve oocyte maturation rate, it improves oocyte and embryo quality, which leads to better embryo development and pregnancy outcomes.


Asunto(s)
Fármacos para la Fertilidad Femenina/farmacología , Hormona del Crecimiento/farmacología , Técnicas de Maduración In Vitro de los Oocitos , Mitocondrias/efectos de los fármacos , Oocitos/efectos de los fármacos , Animales , Células Cultivadas , Medios de Cultivo , Técnicas de Cultivo de Embriones , Implantación del Embrión , Transferencia de Embrión , Femenino , Fertilización In Vitro , Tamaño de la Camada , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Oocitos/metabolismo , Embarazo , Resultado del Embarazo , Proteínas Recombinantes/farmacología
12.
Nat Commun ; 12(1): 1243, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623049

RESUMEN

To date, a large number of mutations have been screened from breast and ovarian cancer patients. However, most of them are classified into benign or unidentified alterations due to their undetectable phenotypes. Whether and how they could cause tumors remains unknown, and this significantly limits diagnosis and therapy. Here, in a study of a family with hereditary breast and ovarian cancer, we find that two BARD1 mutations, P24S and R378S, simultaneously exist in cis in surviving cancer patients. Neither of the single mutations causes a functional change, but together they synergetically impair the DNA damage response and lead to tumors in vitro and in vivo. Thus, our report not only demonstrates that BARD1 defects account for tumorigenesis but also uncovers the potential risk of synergetic effects between the large number of cis mutations in individual genes in the human genome.


Asunto(s)
Carcinogénesis/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Mutación/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Animales , Proteína BRCA1/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Daño del ADN , Análisis Mutacional de ADN , Femenino , Inestabilidad Genómica/genética , Síndrome de Cáncer de Mama y Ovario Hereditario/patología , Humanos , Masculino , Ratones , Linaje , Péptidos/metabolismo , Unión Proteica , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sci Adv ; 6(15): eaaz0051, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32494588

RESUMEN

Site-specific chemical conjugation of proteins can enhance their therapeutic and diagnostic utility but has seldom been applied to CRISPR-Cas9, which is a rapidly growing field with great therapeutic potential. The low efficiency of homology-directed repair remains a major hurdle in CRISPR-Cas9-mediated precise genome editing, which is limited by low concentration of donor DNA template at the cleavage site. In this study, we have developed methodology to site-specifically conjugate oligonucleotides to recombinant Cas9 protein containing a genetically encoded noncanonical amino acid with orthogonal chemical reactivity. The Cas9-oligonucleotide conjugates recruited an unmodified donor DNA template to the target site through base pairing, markedly increasing homology-directed repair efficiency in both human cell culture and mouse zygotes. These chemically modified Cas9 mutants provide an additional tool, one that is complementary to chemically modified nucleic acids, for improving the utility of CRISPR-Cas9-based genome-editing systems.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , ADN/genética , ADN/metabolismo , Edición Génica/métodos , Ratones , Oligonucleótidos/genética , Reparación del ADN por Recombinación
14.
Microsyst Nanoeng ; 6: 2, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567617

RESUMEN

Conventional electroporation approaches show limitations in the delivery of macromolecules in vitro and in vivo. These limitations include low efficiency, noticeable cell damage and nonuniform delivery of cells. Here, we present a simple 3D electroporation platform that enables massively parallel single-cell manipulation and the intracellular delivery of macromolecules and small molecules. A pyramid pit micropore array chip was fabricated based on a silicon wet-etching method. A controllable vacuum system was adopted to trap a single cell on each micropore. Using this chip, safe single-cell electroporation was performed at low voltage. Cargoes of various sizes ranging from oligonucleotides (molecular beacons, 22 bp) to plasmid DNA (CRISPR-Cas9 expression vectors, >9 kb) were delivered into targeted cells with a significantly higher transfection efficiency than that of multiple benchmark methods (e.g., commercial electroporation devices and Lipofectamine). The delivered dose of the chemotherapeutic drug could be controlled by adjusting the applied voltage. By using CRISPR-Cas9 transfection with this system, the p62 gene and CXCR7 gene were knocked out in tumor cells, which effectively inhibited their cellular activity. Overall, this vacuum-assisted micropore array platform provides a simple, efficient, high-throughput intracellular delivery method that may facilitate on-chip cell manipulation, intracellular investigation and cancer therapy.

15.
Nat Chem Biol ; 16(2): 160-169, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31819270

RESUMEN

Pseudouridine synthases (PUSs) are responsible for installation of pseudouridine (Ψ) modification in RNA. However, the activity and function of the PUS enzymes remain largely unexplored. Here we focus on human PUS10 and find that it co-expresses with the microprocessor (DROSHA-DGCR8 complex). Depletion of PUS10 results in a marked reduction of the expression level of a large number of mature miRNAs and concomitant accumulation of unprocessed primary microRNAs (pri-miRNAs) in multiple human cells. Mechanistically, PUS10 directly binds to pri-miRNAs and interacts with the microprocessor to promote miRNA biogenesis. Unexpectedly, this process is independent of the catalytic activity of PUS10. Additionally, we develop a sequencing method to profile Ψ in the tRNAome and report PUS10-dependent Ψ sites in tRNA. Collectively, our findings reveal differential functions of PUS10 in nuclear miRNA processing and in cytoplasmic tRNA pseudouridylation.


Asunto(s)
Hidroliasas/metabolismo , MicroARNs/metabolismo , ARN de Transferencia/metabolismo , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular/fisiología , Citoplasma/genética , Citoplasma/metabolismo , Regulación de la Expresión Génica , Humanos , Hidroliasas/genética , Procesamiento Postranscripcional del ARN
16.
Onco Targets Ther ; 12: 5589-5599, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31371996

RESUMEN

BACKGROUND AND OBJECTIVE: Gastric cancer is one of the most common cancers worldwide. However, the mechanisms associated with this disease are still not clear. Malic enzyme 1 (ME1) is a metabolic enzyme that is overexpressed in various cancers. Here, we examined whether it is involved in gastric cancer. METHODS: ME1 expression was knocked down in the gastric cancer cell line SGC7901. Cell growth and migration were measured using a real-time microelectronic cell sensor system. Cell invasion was measured using a Transwell assay. Cell cycle analysis was also performed to examine cell cycle arrest. A gastric cancer tissue microarray of gastric cancer was stained using immunohistochemistry. ME1 expression levels were also statistically analysed. RESULTS: ME1 knockdown in gastric cancer SGC7901 cells significantly inhibited cell proliferation, migration, and invasion. Cell cycle arrest was induced in the G2 phase. Further, ME1 expression was significantly correlated with gastric cancer patient prognosis based on both univariable and multivariable survival analysis. No significant difference was found between ME1 expression in gastric cancer tissues and that in adjacent tissues. CONCLUSION: Our results provide evidence that ME1 is a key factor for gastric cancer. ME1 might be pro-oncogenic during both the development and migration of gastric cancer; it also might be related to gastric cancer patient survival.

17.
Cell Death Dis ; 10(7): 474, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31209201

RESUMEN

Reproductive problem has been one of the top issues for women health worldwide in recent decades. As a typical female disease, primary ovarian insufficiency (POI) results in a loss of ovarian follicles and oocytes that thus destroys women fertility. However, due to the complex of POI etiology and rare resource of human POI oocytes, few biomarkers have been identified in clinics and no effective strategy could be applied to treat POI patients. In the search of possible association between DNA damage and POI by Smart-Seq2 and RT2 profiler PCR array, we find that BRCA2, a core DNA repair gene for homologous recombination shows significantly lower expression in two POI patient oocytes. In line with this, we generated oocyte-specific knockout mouse model driven by Gdf9-Cre. The Brca2-deficient mice are infertile because of the arrested follicle development and defective oocyte quality caused by the accumulation of DNA damage. Notably, ectopic expression of Brca2 in Brca2-deficient oocytes could partially restore the oocyte maturation and chromosome stability. Collectively, our data assign a definite deficiency to BRCA2 as a POI driver during follicle development and oocyte maturation, and provide a potential fertility treatment strategy for POI patients induced by BRCA2 deficiency.


Asunto(s)
Proteína BRCA2/deficiencia , Insuficiencia Ovárica Primaria/metabolismo , Alelos , Animales , Proteína BRCA2/metabolismo , Daño del ADN/genética , Regulación hacia Abajo/genética , Exones/genética , Femenino , Fertilidad , Eliminación de Gen , Humanos , Meiosis , Ratones , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Insuficiencia Ovárica Primaria/genética
18.
Cell Mol Life Sci ; 76(11): 2217-2229, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30980108

RESUMEN

As the female gamete, meiotic oocytes provide not only half of the genome but also almost all stores for fertilization and early embryonic development. Because de novo mRNA transcription is absent in oocyte meiosis, protein-level regulations, especially the ubiquitin proteasome system, are more crucial. As the largest family of ubiquitin E3 ligases, Skp1-Cullin-F-box complexes recognize their substrates via F-box proteins with substrate-selected specificity. However, the variety of F-box proteins and their unknown substrates hinder our understanding of their functions. In this report, we find that Fbxo30, a new member of F-box proteins, is enriched in mouse oocytes, and its expression level declines substantially after the metaphase of the first meiosis (MI). Notably, depletion of Fbxo30 causes significant chromosome compaction accompanied by chromosome segregation failure and arrest at the MI stage, and this arrest is not caused by over-activation of spindle assembly checkpoint. Using immunoprecipitation and mass spectrometric analysis, we identify stem-loop-binding protein (SLBP) as a novel substrate of Fbxo30. SLBP overexpression caused by Fbxo30 depletion results in a remarkable overload of histone H3 on chromosomes that excessively condenses chromosomes and inhibits chromosome segregation. Our finding uncovers an unidentified pathway-controlling chromosome segregation and cell progress.


Asunto(s)
Segregación Cromosómica , Cromosomas de los Mamíferos/metabolismo , Proteínas F-Box/genética , Histonas/genética , Meiosis , Proteínas Nucleares/genética , Oocitos/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Animales , Cromosomas de los Mamíferos/ultraestructura , Proteínas F-Box/antagonistas & inhibidores , Proteínas F-Box/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Ratones , Ratones Endogámicos ICR , Proteínas Nucleares/metabolismo , Oocitos/ultraestructura , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Transducción de Señal , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
19.
Cell Res ; 28(4): 462-475, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29463901

RESUMEN

Before fertilization, mammalian oocyte undergoes an asymmetric division which depends on eccentric positioning of the spindle at the oocyte cortex to form a polar body and an egg. Since the centriole is absent and, as a result, the polar array microtubules are not fully developed in oocytes, microtubules have seldom been considered as required for eccentric positioning of the spindle, while actin-related forces have instead been proposed to be primarily responsible for this process. However, the existing models are largely conflicting and the underlying mechanism of asymmetric division is still elusive. Here we show that poly(ADP-ribose) (PAR) is enriched at mouse oocyte cortical area throughout meiosis. Specific removal of cortical PAR results in an ectopic spindle and a failure of asymmetric division. During spindle migration, when the spindle deviates from the center of oocyte by a pushing force of cytoplasmic actin, the short polar array microtubules emanating from the juxtacortical spindle pole extend to the cortex and penetrate into cortical PAR, docking and stabilizing the spindle at the cortex which facilitates the asymmetric division. This process depends on the affinity between PAR and microtubule-associated proteins such as Spindly, which contributes to a physical link for cortical PAR and the spindle. Notably, fusing a PAR-binding domain to end-binding protein 3, a plus-end tracking protein at the polar array microtubules, restores the asymmetric division of oocytes with Spindly knockdown. Thus, our work demonstrates a comprehensive mechanism for oocyte spindle positioning and asymmetric division.


Asunto(s)
Meiosis , Oocitos/citología , Poli Adenosina Difosfato Ribosa/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Animales , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos ICR , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Oocitos/metabolismo , Oocitos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
20.
J Biol Chem ; 291(53): 27334-27342, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27821591

RESUMEN

Differentiated cells can be reprogrammed by transcription factors, and these factors that are responsible for successful reprogramming need to be further identified. Here, we show that the neuronal repressor RE1-silencing transcription factor (REST) is rich in porcine oocytes and requires for nuclear transfer (NT)-mediated reprogramming through inhibiting TGFß signaling pathway. REST was dramatically degraded after oocyte activation, but the residual REST was incorporated into the transferred donor nuclei during reprogramming in NT embryos. Inhibition of REST function in oocytes compromised the development of NT embryos but not that of IVF and PA embryos. Bioinformation analysis of putative targets of REST indicated that REST might function on reprogramming in NT embryos by inhibiting TGFß pathway. Further results showed that the developmental failure of REST-inhibited NT embryos could be rescued by treatment of SB431542, an inhibitor of TGFß pathway. Thus, REST is a newly discovered transcription factor that is required for NT-mediated nuclear reprogramming.


Asunto(s)
Blastocisto/metabolismo , Núcleo Celular/genética , Reprogramación Celular , Embrión de Mamíferos/metabolismo , Oocitos/metabolismo , Proteínas Represoras/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Blastocisto/citología , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/citología , Desarrollo Embrionario , Femenino , Técnicas de Transferencia Nuclear , Oocitos/citología , Proteínas Represoras/genética , Porcinos , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...